منابع مشابه
Titanium Pnictide Oxide Superconductors
In 2012, a novel superconductor BaTi2Sb2O was found in the layered titanium pnictide oxides ATi2Pn2O. A related superconductor BaTi2Bi2O was subsequently discovered in 2013. The structure of these materials consists of alternate stacking of superconducting Ti2Pn2O layers and Ba blocking layers, which is somewhat similar to high-Tc cuprates since the Ti2Pn2O layer contains an anti-CuO2-type Ti2O...
متن کاملAmorphous titanium-oxide supercapacitors
The electric capacitance of an amorphous TiO2-x surface increases proportionally to the negative sixth power of the convex diameter d. This occurs because of the van der Waals attraction on the amorphous surface of up to 7 mF/cm2, accompanied by extreme enhanced electron trapping resulting from both the quantum-size effect and an offset effect from positive charges at oxygen-vacancy sites. Here...
متن کاملInvestigation of zinc oxide additive on the dielectric properties and microstructure of titanium oxide ceramic
In recent years, research into materials with high dielectric constants, including doped titanium oxide, has increased because of the potential for modern microelectronics applications and high-density energy storage. The aim of this study was to investigate the effects of zinc oxide as an acceptor additive on the dielectric properties and microstructure of titanium oxide ceramics. The amount o...
متن کاملElectrophoretic Synthesis of Titanium Oxide Nanotubes
In the current research project, sol-gel electrophoresis technique was utilized to grow titanium dioxide (TiO2) nanotubes. A titanium sol was prepared using organometallic precursors of titanium to fill the template channels. The prepared solwas driven into nanopores of porous anodic aluminum oxide templates under the influence of a DC electric field to form nanotubes on the pore walls. Tube fo...
متن کاملNanoporous Titanium Oxide Morphologies Produced by Anodizing of Titanium
A quick and dependable technique has been developed that allows us to selectively produce anodized TiO2 in the form of nanotubes. The process employs mild chemical conditions and ambient temperature. The method can consistently produce nearly 100% surface coverage of nanotubes within 10 min of anodizing. Anodizing in relatively high pH electrolytes for 1 hour permitted us to produce nanotubes o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature
سال: 1928
ISSN: 0028-0836,1476-4687
DOI: 10.1038/122205a0